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Problem motivation

Figure 1: Model-based control vs

Data-Driven control paradigms.

• Data-Driven control: type of offline direct adaptive

control.

• Offline: suitable for offline optimization

• Direct: directly designs a control law using the gathered

data. Two main techniques

1. Model-reference based methods: Virtual Reference

Feedback Tuning (VRFT) [4], Iterative Feedback

Tuning [2], correlation-based [3]...

2. Methods based on Willems’ et al. lemma [1,5].

• The data can be poisoned.

• We will focus on VRFT, a popular model-reference

based method1.
.

1You can find online also an analysis of LMI methods that exploit Willems’ et al. lemma.
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Background: Virtual Reference Feedback Tuning [4]

1. Feed a pre-designed signal ut
and measure yt.
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1. Feed a pre-designed signal ut
and measure yt.

2. Given a reference model Mr(z),

compute the reference signal rt.

3. Compute the virtual error

et = rt − yt.
4. Design a control law K that

outputs a signal ūt that is close

to ut.

Under some assumptions, it is possible to show that minimizing 1
N

∑N
t=1(ūt − ut)2, for

N →∞, yields a law K that converges to the minimum of

min
K
‖Mr(z)− (1−Mr)KG(z)‖2.
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Attack Formulation

Figure 2: Data poisoning scheme.

• We denote by u′t = ut + au,t the

poisoned input, where au is the

poisoning signal (similarly for y′t).

• We denote by L the learner’s criterion

(e.g., the MSE loss of VRFT).

• Similarly, A is the attacker’s criterion.
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Attack Formulation

We can cast the attacker’s problem as a bi-level optimization problem.

max
u′,y′

A(u,y,K(u′,y′))

s.t. K(u′,y′) ∈ arg min
K

L(u′,y′,K)

‖u′ − u‖qu ≤ δu, ‖y′ − y‖qy ≤ δy,

• We denote by u′t = ut + au,t the

poisoned input, where au is the

poisoning signal (similarly for y′t).

• We denote by L the learner’s criterion

(e.g., the MSE loss of VRFT).

• Similarly, A is the attacker’s criterion.

• qu, qy are convex norms;

δu, δy ∈ (0, 1).
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Attack Formulation

max
u′,y′

A(u,y,K(u′,y′))

s.t. K(u′,y′) ∈ arg min
K

L(u′,y′,K)

‖u′ − u‖qu ≤ δu, ‖y′ − y‖qy ≤ δy,

1. Assume the inner problem K(u′,y′) ∈ arg minK L(u′,y′,K) is convex and sufficiently

regular.

• We can perform single-level reduction [6] and replace the inner problem with its KKT

conditions.

2. Then, assume K is parameterized by θ (we will write Kθ). We can conclude that

∇θL(u′,a′,Kθ) = 0⇒ ∇auθ = −(∇au∇θL)(∇2
θL)−1

(similarly also for ay).

3. This allows us to find approximate attacks by using gradient ascent methods.
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VRFT: Attack Formulation



VRFT: Attack Formulation

1. Remember the VRFT criterion 1
N

∑N
t=1(ut − ūt)2, where ūt = Kθ(z)(M

−1
r (z)− 1)yt.

2. Assume Kθ = β>(z)θ is linearly parametrized by θ ∈ Rd, with βi(z) being a rational

transfer function. The learner’s criterion under attack can be rewritten in matrix form as

L(u′,y′, θ) =
1

N
‖u′ − Φ(y′)θ‖22

where Φ is a matrix that includes the effect of Mr(z) (ref. model) and β(z).

3. How do we choose the attacker’s criterion? Simplest choice is to just maximize

the original VRFT criterion!

max
u′,y′

A(u,y, θ̂(u′,y′)) =
1

N

∥∥∥u− Φ(y)θ̂(u′,y′)
∥∥∥2
2

s.t. θ̂(u′,y′) =
(
Φ>(y′)Φ(y′)

)−1
Φ>(y′)u′

‖u′ − u‖qu ≤ δu, ‖y′ − y‖qy ≤ δy.
The problem is concave in the input signal u′, and non-convex in the output signal y′.
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VRFT: Attack Formulation

Input: Data-set (u,y); objective function A;

parameters δ, η

Output: Attack vectors au,ay
i← 0, (a

(i)
u ,a

(i)
y )← (0,0)

θ̂(i) ← θ̂(u+ a
(i)
u ,y + a

(i)
y )

J (i) ← A(u,y, θ̂(i))

do

a
(i+1)
u ← solve attacker’s problem in au
using CCP [7]

a
(i+1)
y ← PGA(δy, γi, θ̂(u+a

(i+1)
u ,y+a

(i)
y ))

θ̂(i+1) ← θ̂(u+ a
(i+1)
u ,y + a

(i+1)
y )

J (i+1) ← A(u,y, θ̂(i+1))

i← i+ 1

while |J (i+1) − J (i)| > η

-Remember that u′ = u + ay (resp. y′).

-The attacker wants to solve

max
u′,y′

1

N

∥∥∥u− Φ(y)θ̂(u′,y′)
∥∥∥2
2

s.t. θ̂(u′,y′) =
(
Φ>(y′)Φ(y′)

)−1
Φ>(y′)u′

‖u′ − u‖qu ≤ δu, ‖y′ − y‖qy ≤ δy.

-The problem is concave in the input signal u′:

we use convex-concave programming

techniques.

-The problem is non-convex in the output

signal y′: we use projected gradient ascent.
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Simulations2

u(t) y(t)

Flexible transmission system, from [4].

max
u′,y′

1

N

∥∥∥u− Φ(y)θ̂(u′,y′)
∥∥∥2
2

s.t. θ̂(u′,y′) =
(
Φ>(y′)Φ(y′)

)−1
Φ>(y′)u′

‖u′ − u‖qu ≤ δu, ‖y′ − y‖qy ≤ δy.

• Linearly parametrized controller

Kθ(z) = β>(z)θ, where θ ∈ R6 and

βi(z) = z−i+2

z−1 , i = 1, . . . , 6.

• δy = εy‖y‖2 and δu = εu‖u‖2.

• Scenario (A): ut is a step signal

• Scenario (B): ut is a white noise

signal
2All the code can be found at https://github.com/rssalessio/PoisoningDataDrivenControl.
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Simulations2
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scenario (B). We used εu = 0.1 and εy = 0.07.
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Simulations2
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scenario (B). We used εu = 0.1 and εy = 0.07.
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Conclusions

• Data Poisoning is not a new concept in Machine Learning (see Biggio et al. [8]).

• Several methods developed by the ML community could be adapted to the data-driven

control case.

• Multiple venues of research:

1. Improve the data-poisoning algorithm. The solution heavily depends on the PGA step.

2. Better investigate the theoretical properties of the attack.

3. Make the data-driven algorithm more robust: either by (1) adding constraints, or (2) use

some kind of adversarial training.

4. Attack detection using statistical testing.

5. Further tests on real control systems.

Thank you for listening!
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