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Problem motivation
and background



Problem motivation

e Temperature control in buildings may be
complicated.

e Data-driven control approaches: use data to directly
compute a control law.

1. Model-reference based methods: Virtual Reference
Feedback Tuning (VRFT) [1], lterative Feedback
Tuning [2], correlation-based [3]...

2. Methods based on Willems' et al. lemma [4,5].

e The data can be poisoned.

e We focus on VRFT, a popular model-reference based
method.
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|— complicated.
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g Data-driven control approaches: use data to directly
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l— 2. Methods based on Willems' et al. lemma [4,5].
The data can be poisoned.
| We focus on VRFT, a popular model-reference based
method.
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KTH Live-in Lab Testbed
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KTH Live-in Lab Testbed

1. We modeled the building using IDA-ICE, a
building performance simulation software [6].

Al - Weather cond. I
External air - - Gt 2. We focused on the problem of ventilation
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control of a single apartment.

Apartment

directly from the data of an (empty)

apartment.
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l 3. We applied VRFT to derive a control law,
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Exhaust air Building

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ) 4. Finally, we tested whether VRFT is
susceptible to data poisoning attacks.
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Temperature control



G(z) _ C(z[ _ A)_IB +D Yt 1. Feed a pre-designed signal

U
and measure y;.
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Russo et al

Ut

(KTH)

Yt

G(z)=C(zI-A)~'B+D
(2) (2 ) + 1. Feed a pre-designed signal u;

and measure y;.

2. Given a reference model M,.(z),

3 compute the reference signal r;.

Tt
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— % _JG(2)=C(zI - A)~'B+D

Yt

€t Tt

. Feed a pre-designed signal u;

and measure y;.

. Given a reference model M,.(z),

compute the reference signal r;.

. Compute the virtual error

€t =Tt — Yt
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Virtual Reference Fe

. Feed a pre-designed signal u;

and measure ;.

O N G(z) =C(2I — A)"'B+ D Y . Given a reference model M,.(z),

compute the reference signal r;.
. Compute the virtual error
€t =Ty — yt-
u e . r .

— K L O L M(2) . Design a control law K that
outputs a signal u; that is close
to uy.
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Virtual Reference Fe

1. Feed a pre-designed signal
and measure y;.

I AN G(2) = C(2I — A)~'B+ D Y 2. Given a reference model M,.(z),
compute the reference signal r;.

3. Compute the virtual error

€t =Tt — Yt

— K O M71(z) 4. Design a control law K that

outputs a signal @; that is close
to uy.

Under some assumptions, it is possible to show that minimizing + Zil(ﬂt — uy)?, for
N — o0, yields a law K that converges to the minimum of

m}én IM,.(2) — (1 — M,)KG(2)]|2.
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Temperature control: method
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2. The control signal is a real
number in [0,1]. We designed 2
experiments for VRFT.
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3. Goal of VRFT: compute

where Ky(2) =S5 _, 0 2
(PID-like controller).

4. We used a 2nd order reference
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model (see plot on the left).
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Temperature control: results

—e— Scenario A - 100 Data Points o— Scenario B - 100 Data Points ~ —e— Scenario A - 1000 Data Points —e— Scenario B - 1000 Data Points
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1. Scenario A: u; ~ N (3, §); Scenario B: u; ~ N (3,1).
2. January was used for training of VRFT (empty apartment); February for evaluation of the

control law (1 person). For each case we run 50 simulations.
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Data poisoning



Attack Formulation

Data Poisoning
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Figure 1: Data poisoning scheme.
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Attack Formulation

We can cast the attacker’s problem as a bi-level optimization problem.
max A(u,y, K(u',y"))
u/yy/

st. K(u',y') € argmin L(u',y', K)
K
lu' —ulls <eullulls, [y —yll2 <eyllyll,
e We denote by u, = u; + a,,; the poisoned input, where a, is the poisoning signal
(similarly for y3).

e We denote by L the learner’s criterion (e.g., the MSE loss of VRFT).

e Similarly, A is the attacker’s criterion.

Attack based on Russo, A., Proutiere, A.. Poisoning attacks against data-driven control methods. American
Control Conference, 2021.
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VRFT: Attack Formulation

1. Remember the VRFT criterion + Ztlil(ut —u1y)?, where @i; = Ko(2)(M71(2) — 1)y;.

2. The learner’s criterion under attack can be rewritten in matrix form as
1 2
E(u/ay/a 9) = Nllul - (b(y/)QHQ

where @ is a matrix that includes the effect of M,.(z) (ref. model) and Ky(z).
3. How do we choose the attacker’s criterion? Simplest choice is to just maximize

the original VRFT criterion!

2

u— (y)i(u,y)

2

- 1
max A(u,y,0(u,y)) = N

u’,y’
st 0w, y) = (T (¥)0(y)) @ (v)u

[u —ullz <eullulle, [y —yllz < gyllylla-
The problem is concave in the input signal W', and non-convex in the output signal y’.
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VRFT: Attack Formulation

1. Remember the VRFT criterion + Ztlil(ut —u1y)?, where @i; = Ko(2)(M71(2) — 1)y;.

2. The learner’s criterion under attack can be rewritten in matrix form as
1
£y, 0) = o’ = 8393

where @ is a matrix that includes the effect of M,.(z) (ref. model) and Ky(z).
3. How do we choose the attacker’s criterion? Simplest choice is to just maximize

the original VRFT criterion!

R 2
_ ! !
milx Alu,y,0(u,y')) = N HU d(y)o(v',y') )
st O, y) = (@ (¥)ow)) & (y)
v —ull2 <eullullz, [y —yll2 <egyllylla.

The problem is concave in the input signal u’, and non-convex in the output signal y'.

Russo et al. (KTH) Data-Driven Control and Data-Poisoning attacks in Buildings: the KTH Live-In Lab case study, MED 2021 11



VRFT: Attack Formulation

Input: Data-set (u,y); objective function A;
parameters €y, €y, 1
Output: Attack vectors a,, a,
i« 0, a) « (0,0)
0D « O(u+al,y + al)
JD — A(u,y,69)
do

i+1 0 0
ag+ ) < solve attacker’s problem in a,,

using CCP [9]
(Hl) — PGA(gy, (u —+ aSH) Y+ al(f)))
9(”1) 0w+ al™™ y+alth)
JED o A(u, y, §6+D)
14 1+1
while |J0+D — J@| >y

Russo et al. (KTH)

-Remember that u’ = u+ ay (resp. y’).
-The attacker wants to solve

2
max

Y M|

st O(u,y) = (<I>T(y’)<1’(y’))_1 o7 (y')u!
v —ull2 <eullull2, [y —yll2 <eyllyll

-The problem is concave in the input signal u’:
we use convex-concave programming
techniques.

-The problem is non-convex in the output
signal y’: we use projected gradient ascent.
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Data poisoning: results

Scenario B —~ 1000 Data Points - (¢,,¢,) = (0.1,0.2)
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1. Scenario A: u; ~ N (3, §); Scenario B: u; ~ N (3, 1).
2. Each point on the left plots represents the average across 50 simulations for a specific set
of values (e,;€,), displayed on the top of each point (also the unpoisoned cases are

depicted in the plots).
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Data poisoning: original vs poisoned data
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Conclusions




Conclusions

e Data-driven control methods can be used to derive control laws directly from data.
e Data Poisoning is not a new concept in Machine Learning (see Biggio et al. [10]).

e We must pay attention to the security aspects of data-driven methods!

Thank you for listening!
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Attack Formulation

max  A(u,y, K(u',y'))
u’,y’
st. K(u',y') € argmin L(v',y', K)
K
v’ —ullg, <du, N1y —yllg, <0y,

1. Assume the inner problem K(u',y’) € argmin, L£(u/,y’, K) is convex and sufficiently
regular.

e We can perform single-level reduction [6] and replace the inner problem with its KKT
conditions.

2. Then, assume K is parameterized by 6 (we will write Ky). We can conclude that
VoL(u',a', Kg) =0 = Va,0 = —(Va,VoL)(V;L) ™

(similarly also for a,)).

3. This allows us to find approximate attacks by using gradient ascent methods.

Russo et al. (KTH) Data-Driven Control and Data-Poisoning attacks in Buildings: the KTH Live-In Lab case study, MED 2021



Attack Formulation

max  A(u,y, K(u',y"))
u/’y/
st. K(u',y') € argmin L(v',y', K)
K

lu' —ullg, <0u, NIy —yllq, <0y,

1. Assume the inner problem K (u',y’) € argmin, L(u/,y’, K) is convex and sufficiently
regular.
e We can perform single-level reduction [6] and replace the inner problem with its KKT
conditions.

2. Then, assume K is parameterized by 6 (we will write Ky). We can conclude that
VoL(W,a', Kp) =0 = Va,0 =—(Va,VeLl) (VL)

(similarly also for a,).
3. This allows us to find approximate attacks by using gradient ascent methods.
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