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Problem Motivation and

Background



Introduction

This work is motivated by current

trends in privacy:

• More and more data is being

published online.

• Most of the sensors are connected

to the internet, perhaps using

unencrypted connections.

• Even the window size of a browser

can be used to identify someone.
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Problem motivation

We study the scenario where an

eavesdropper tries to detect a

change in a controlled system S.
• Eavesdropping leads to a loss of

privacy.

• This privacy loss may reveal

private information.

• Eavesdropping is more likely to

happen if the system has many

sensors.

• Goal: how can we make the job

of the eavesdropper as hard as

possible?
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Problem formulation

We consider a Markov Decision Process (MDP) M that undergoes

a change at some point ν.

Full-Information Limited-Information

M is described by a tuple (X ,U , P, r), where X and U are the state and

action spaces, P is the transition density and r is the reward function.

We focus on single-change problems. We model this change as an

exogenous binary input st = 1{t≥ν}, so that the transition model is

P (x′|x, u, s) =
{
P0(x

′|x, u) if s = 0,

P1(x
′|x, u) if s = 1
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Problem formulation

Full-Information Limited-Information

Assumption

• The victim can observe st.

• The eavesdropper wishes to infer the change point ν by observing

the system’s dynamics.

• Full-information: the eavesdropper can measure (xt, ut).

• Limited-Information: the eavesdropper only measures (xt).

• The goal of the victim is to make the inference of the change

point ν as hard as possible.
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Modeling the inference problem

We use minimax Quickest Change Detection theory [3,4] to model

the eavesdropper’s problem.

There are two fundamental ingredients:

1. A measure of performance for a detection rule T [1,2]:

2. A lower bound [2-4]:
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The idea

The idea is to exploit the lower bound [2]:

lim inf
T̄→∞

inf
T∈D(T̄ )

E1(T )

ln T̄
≥ I−1

where I = limn→∞ n−1
∑ν+n

t=ν Zt, with Zi = ln f1(Yi|Y1,...,Yi−1)
f0(Yi|Y1,...,Yi−1)

and Yi is the i-th observation of the eavesdropper. f0 indicates the

density function before the change (f1 after the change).

The idea: make the inference problem as hard as possible by minimizing

the information rate I.

We also define the privacy level to be I = I−1.
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and Yi is the i-th observation of the eavesdropper. f0 indicates the

density function before the change (f1 after the change).

The idea: make the inference problem as hard as possible by minimizing

the information rate I.

Differential Privacy: what is the connection with differential privacy?

• We are not interested in minimizing the statistical difference

between two trajectories (τ, τ ′), but the difference in any trajectory

before and after the abrupt change.

• Minimizing I is equivalent to minimizing the on-avg. KL-Privacy [5]
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The idea

The idea is to exploit the lower bound [2]:

lim inf
T̄→∞

inf
T∈D(T̄ )

E1(T )

ln T̄
≥ I−1

where I = limn→∞ n−1
∑ν+n

t=ν Zt, with Zi = ln f1(Yi|Y1,...,Yi−1)
f0(Yi|Y1,...,Yi−1)

and Yi is the i-th observation of the eavesdropper. f0 indicates the

density function before the change (f1 after the change).

Problem: how can we balance the impact on performance?

Use two policies: π0 used before the change, and π1 used after the

change. Solve the following performance-privacy optimization problem

sup
π0,π1

ρV π0
0 + (1− ρ)V π1

1 − λI(π0, π1),

(ρ, λ) tune the performance-privacy trade-off, and I(π0, π1) measures the

information rate.

V π0
0 is the average reward of the system controlled by π0 (sim. V π1
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Full-information scenario



Information rate in the full-information case

Theorem

In the full-information case (i.e., the

eavesdropper measures Yt = (Xt, Ut)), under

suitable assumptions of ergodicity we have

I =Ex∼µ
π1
1 ,u∼π1(x)

[D(P1(x, u), P0(x, u))]

+ Ex∼µ
π1
1

[D(π1(x), π0(x))] .

• µπ1
1 is the stationary measure of the MDP controlled by π1 after the

change

• D(P,Q) is the KL-divergence between P and Q.
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Performance-privacy trade-off

Theorem

In finite state-action spaces solving

supπ0,π1
ρV π0

M0
+ (1− ρ)V π1

M1
− λI(π0, π1)

amounts to solving a concave problem.

• It can be solved using methods from DC programming (Difference of

Convex functions).

• Convex problem if π1 = π0 (equivalent to having ρ = 1).
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Limited-information scenario



Information rate in the Limited-information case

Theorem

In the limited-information case (i.e., the

eavesdropper measures Yt = (Xt)), under

suitable assumptions of ergodicity we have

I =Ex∼µ
π1
1

[D (Pπ1
1 (x), Pπ0

0 (x))] .

where Pπi
i (x′|x) = Ea∼πi(·|x)[Pi(x

′|x, a)].

• I is smaller compared to the full-information case (it is an

application of the log-sum inequality).

• However, computing policies that attain the best level of

achievable privacy is more challenging (even computing the

minimum value of I is a concave program).

• Solving supπ0,π1
ρV π0

M0
+ (1− ρ)V π1

M1
− λI(π0, π1) in finite

state-action spaces is still a concave problem.
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Examples and numerical results



Linear systems: information rate

Consider a linear system:

xt+1 = Axt +But︸ ︷︷ ︸
Nominal dynamics

+ Fθst︸ ︷︷ ︸
Abrupt change

+ wt︸︷︷︸
White noise

,

where F and θ are constant terms, st = 1{t≥ν} and wt ∼ N (0, Q).

Proposition

Consider the following policy ut = π0(xt)st + π1(xt)(1− st). The

lowest possible value of the information rate in the two scenarios is

• Full information case

inf
πi

I(π0, π1) =
1

2
θ⊤F⊤Q−1Fθ ⇒ The more noise the better

• Limited information case

inf
π0,π1

I(π0, π1) =
1

2
θ⊤F⊤G⊤Q−1GFθ ⇒ Depends on the inv. of B

where G = I −B(B⊤QB)−1B⊤Q.
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Linear systems: trade-off - numerical example

Consider xt+1 =

ñ
0 1

1 1

ô
xt +

ñ
0.01

1

ô
ut +

ñ
0.5

0.7

ô
st + wt, with Q = I.

We study the solution to the performance-privacy problem

sup
π0,π1

ρV π0
0 + (1− ρ)V π1

1 − λI(π0, π1),

where V πi
i is the avg. reward, with reward r(x, u) = ∥x∥22. (we omit

the closed form solution for brevity).
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Figure 1: Value of E[∥x∥22] in the limited information case for λ = 1.5 and

different values of ρ. Shadow area indicates 95% confidence interval.
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Linear systems: trade-off - numerical example

sup
π0,π1

ρV π0
0 + (1− ρ)V π1

1︸ ︷︷ ︸
V

−λI(π0, π1),
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Figure 2: Privacy level I−1 (left) and Average reward ρV π0
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(right) as function of ρ and λ. 13



3-states MDP

Consider an MDP with 3 states and 2 actions. We analyse the

minimum information rate between P0 and Pθ, where

Pθ(x
′|x, u) = θP0(x

′|x, u) + (1− θ)Pb(x
′|x, u), θ ∈ [0, 1]
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Figure 3: Logarithmic value of I−1 as a function of θ
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Conclusion



Conclusion & Future work

Conclusion1:

• We analysed the problem of making the inference of an abrupt

change as hard as possible using the tools from QCD

• Our approach is equivalent to minimizing the On-average KL-Privacy

• For general MDPs the problem is hard to solve, but for linear

systems we get nice results

• Future work: consider the learning problem

Thank you for listening!

1Code available here https://github.com/rssalessio/PrivacyStochasticSystems
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