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Continuous Authentication
1

Authenticating with
I movement
I facial features
I behavior
I voice
I . . .
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Continuous Authentication
2

I Workstations:
keystroke dynamics,
mouse movements

I Mobile/wearable
electronic devices:
touch gestures,
location, timing, hand
movement,
orientation and grasp
(HMOG), . . .

I . . .
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System Model
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Figure: System model.
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User Behavior
4

I Amount of user traffic in time-slot t
Λu(t) ∼ Poisson(λu)

I User behavior Bu ∼ N (bu, σu)

I admittedly simple, but it allows for analytical
tractability.

I Immediate reward vr for the operator
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Incident Detection
5

Continuous Authentication
I False positive rate ηu
I Single-threshold rule

I Test result is positive if Bu > c
I Detection threshold c = Φ−1

u (1− ηu)
I System states:

I Blocking state (BL): user can not
interact with resources,

I Unblocking state (UB): user is
authorized to interact.

Intrusion Detection System (IDS)
I Per time-slot operation cost m
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Attack Model
6

I Cost Ca of system compromise

I In every time-slot, the attacker chooses between

I Listening (l(t) = 1, a(t) = 0): learn to imitate
legitimate user

I Attacking (l(t) = 0, a(t) = 1): imitates legitimate
user behavior and executes a rogue command on
the resource

I Waiting (l(t) = 0, a(t) = 0)
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Attack Model - Listening
7

I Total amount of observation
L(t) =

∑t−1
τ=0 1{l(τ)=1}Λu(τ) of the attacker

I IDS detection probability δl(m)
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Attack Model - Attacking
8

I Attacker-generated input
B̂u(L(t)) ∼ N

(
b̂u (L(t)) , σ̂u (L(t))

)
I b̂u(L(t)) = bu(1 + e−γL(t))
I σ̂u(L(t)) = σu(1 + e−γL(t))

I Receiver Operating Characteristic
(ROC) curve

I ROC(ηu, L(t)) = Φ

(
bu
σu

− bu−σuΦ−1(ηu)

σu(1+e−γL(t))

)
I False Negative = 1− ROC

I IDS detection probability δa(m)

USER

ATTACKER
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Continuous Authentication Game
9

I Defender (operator)
I Chooses a defense strategy (m, ηu)
I In order to maximize its average utility.

I Attacker (follower)
I Decides whether or not to compromise the

system,
I If so, in every time-slot it decides whether to wait,

listen, or attack
I In order to maximize its expected reward.

I Game ends when the attacker is detected (AD) by the
IDS.
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States and Transitions when Waiting
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States and Transitions when Listening
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States and Transitions when Attacking
12
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Optimal Attacker Strategy
13

Theorem

The optimal attack strategy is
Waiting (l(t) = 0 , a(t) = 0) if S(t) = BL , L(t) arbitrary
Listening (l(t) = 1 , a(t) = 0) if S(t) = UB , L(t) < ω̃

Attacking (l(t) = 0 , a(t) = 1) if S(t) = UB , L(t) ≥ ω̃

where ω̃ is independent of time and can be calculated
(before the game-play) for a given set of parameters.
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Proof Sketch
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I Express the optimal attacker reward as a backward
dynamic programming recursion; i.e., Bellman
optimality equations.

I The ratio between the listening and attacking rewards
shows that listening is optimal for L(t) < ω̃.

I Since attacker cannot get any reward by only listening,
for any amount of observation ω̂ ≥ ω̃, there must be
some ω ≥ ω̂, in which attacking is optimal.

I Bellman update of the attacker reward is a contraction
mapping, thus the value iteration algorithm converges
to a unique optimal, which shows that attacking is
optimal for L(t) ≥ ω̃.
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The Optimal Defense Strategy
15

I Defender anticipates the optimal attacker strategy.
I However, she does not know the amount of

observation L(t) = ω attacker has at time-slot t .
I At any time-slot t ,

I System may switch between S(t) = UB and
S(t) = BL.

I Attacker may be detected (i.e., S(t) = AD).
I L(t) may increase randomly if L(t) = ω < ω̃.
I Attack may be successful if L(t) = ω ≥ ω̃.
I Express the average defender utility as stochastic

averaging of the cases/transitions above.
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Numerical Results - Attacker Strategies
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Table: Default parameters.

λu 10
Bu N (100,3)
ηu 0.01
vr 0.1
cr 1

δl (m) 0.1
δa(m) 0.2

q 0.7
ρ 0.98
γ 0.1

Figure: Attacker reward vs. amount of
observation (ω) under different strategies.
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Numerical Results - Threshold
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(a) Threshold (ω̃) vs. ηu .
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(b) Threshold (ω̃) vs. δl (m) and δa(m).

Figure: Observation/attack threshold (ω̃) vs. detection parameters

I Low FP rate⇒ higher success probability for attacking
I High FP rate⇒ the state BL is more dominant
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Numerical Results - Attacker Reward
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(a) Attacker reward vs. false positive
rate (ηu).
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(b) Attacker reward vs. δl (m) and
δa(m).

Figure: Attacker reward vs. detection parameters

I Low FP rate⇒ higher success probability for attacking
I Low δa(m)⇒ IDS is essential
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Numerical Results - Defender Utility
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(a) Average defender utility vs. false
positive rate (ηu).
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(b) Average defender utility vs. δl (m)
and δa(m).

Figure: Average defender utility vs. detection parameters

I As FP increases, the attacker listens more but the
success rate decreases
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Numerical Results - Detection Time
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(a) Average detection time vs. false
positive rate (ηu).
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(b) Average detection time vs. δl (m)
and δa(m).

Figure: Average detection time vs. detection parameters

I Low FP rate⇒ the attacker is urged to attack early
I High FP rate⇒ the state BL is more dominant
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Conclusion
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I Evasion attack under strict black box model
I Security risk management using continuous

authentication and IDS
I Dynamic discrete stochastic leader-follower game
I Imperfect information

I Optimality of threshold strategy for attacker
I Optimal defender strategy

I Productivity vs. protection
I Higher IDS cost without attacker
I Lower IDS cost with attacker
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