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Encrypted control
recent approach1 for protecting networked controllers by encryption
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configuration:
I sensor measurements encrypted and transmitted to controller
I control operation directly performed over encrypted data
I controller output decrypted at the actuator
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Encrypted control
recent approach1 for protecting networked controllers by encryption
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advantages:
I control data protected even when the operation is performed
I operation without decryption
→ secret key can be discarded from the controller

(enhanced security)

1K. Kogiso and T. Fujita, IEEE CDC, 2015
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It is based on the use of Homomorphic Encryption (HE).

property of HE:

Dec(Enc(m1) ? Enc(m2)) = m1 ∗m2

Enc: encryption ?: operation over ciphertexts
Dec: decryption ∗: operation over plaintexts

known facts:
I In theory, any sort of operation can be done over ciphertexts, for an

infinite number of times, by “bootstrapping” of fully HE1.

I In practice, due to computational complexity of bootstrapping,
only addition and multiplication over ciphertexts have been exploited.

1C. Gentry, ACM STOC, 2009
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Challenge: Implementing dynamic controllers using HE

controller (in stable closed-loop):

x(t+ 1) = Fx(t) +Gy(t),

u(t) = Hx(t),

x(t) ∈ Rn : state

y(t) ∈ Rp : input

u(t) ∈ Rm : output

(bounded)

I recursive multiplication by non-integer numbers
→ increasing number of significant digits (even if x(t) bounded)
e.g.,

x(t + 1) = −0.25× x(t) + 1,

= −25× 10−2 × x(t) + 1,

x(0) = 1,

→

x(1) = 0.75 = 75× 10−2

x(2) = 0.8125 = 8125× 10−4

x(3) = 0.796875 = 796875× 10−6

x(4) = 0.80078125 = 80078125× 10−8

... (# of significant digits ↑)

I Without bootstrapping, it is not yet possible for HE schemes
to discard least significant digits, for infinitely many times.

↓
Incapability of operating for infinite time horizon
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It has been a common concern.

Existing results consider:
I static operation or finite time operation [A,C,D]

I use of fully HE with bootstrapping [B]
→ expensive computational cost

I re-encryption of controller state [E,F,G]
→ additional communication channel

I reset of the state [H]
→ performance degradation

1[A] Farokhi, Shames, and Batterham, IFAC Necsys 2016, IFAC CEP 2017
[B] Kim, Lee, Shim, Cheon, Kim, Kim, and Song, IFAC NecSys 2016
[C] Schulze Darup, Redder, Shames, Farokhi, and Quevedo, IEEE CSL 2018
[D] Alexandru, Morari, and Pappas, IEEE CDC 2018
[E] Teranishi, Shimada, and Kogiso, IEEE CDC 2019
[F] Schulze Darup, IFAC WC 2020
[G] Suh and Tanaka, arXiv 2020
[H] Murguia, Farokhi, and Shames, IEEE TAC 2020
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Motivation from systems having state matrix as integers

e.g.,

x(t+ 1) = −1× x(t) +
de−t × 103c

103
,

x(0) = 0.675,

state matrix as integers without scaling

+ x(t) bounded under closed-loop stability

→

→
→

x(0) = 0.675 = 675× 10−3

x(1) = 0.325 = 325× 10−3

x(2) = 0.043 = 43× 10−3

x(3) = 0.092 = 92× 10−3

...

fixed scale factor
fixed # of significant digits

1J. H. Cheon, K. Han, H. Kim, J. Kim, and H. Shim, IEEE CDC 2018
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Motivation from systems having state matrix as integers

controller with F ∈ Zn×n:

x(t+ 1) = Fx(t) +Gy(t),

u(t) = Hx(t),

quantized controller without scale factor for F :

x(t+ 1) = Fx(t) +

⌈
G

s

⌋
· y(t),

u(t) =

⌈
H

s

⌋
· x(t),

y(t) :=

⌈
y(t)

r

⌋
∈ Zp :

quantized
input

r > 0 :
quantization
step size

1/s ≥ 1 : scale factor

Observation
I Under stability, rs · x(t) ≈ x(t) for all t ≥ 0. (fixed scale factor)
I With F ∈ Zn×n, it operates without discarding least significant digits.

→ It can be implemented using only (+,×) over encrypted data,
to operate for an infinite time horizon.

1J. H. Cheon, K. Han, H. Kim, J. Kim, and H. Shim, IEEE CDC 2018
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Proposed approach: Conversion of state matrix to integers

proposed conversion:
x(t+ 1) = Fx(t) +Gy(t) = (F −RH)x(t) +Gy(t) +Ru(t), R ∈ Rn×m

u(t) = Hx(t)

↓ z(t) := Tx(t)

z(t+ 1) = T (F −RH)T−1z(t) + TGy(t) + TRu(t),

u(t) = HT−1z(t),

Q. Is it always possible to have T (F −RH)T−1 as integers?
A. Yes.

Lemma
Given (F,H), there exists (T,R) such that T (F −RH)T−1 ∈ Zn×n.

Q. How to find (T,R) in practice?
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Method for the conversion
Proof of Lemma

Lemma
Given (F,H), there exists (T,R) such that T (F −RH)T−1 ∈ Zn×n.

1. Wlog, the pair (F,H) is observable.

If not, consider Kalman observability decomposition

z1(t+ 1) =F1z1(t) +G1y(t)

z2(t+ 1) =F21z1(t) + F22z2(t) +G2y(t)

u(t) =H1z1(t) + Jy(t)

and take the observable z1-system only.
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Method for the conversion
Proof of Lemma

Lemma
Given (F,H), there exists (T,R) such that T (F −RH)T−1 ∈ Zn×n.

2. Find R such that the eigenvalues of F −RH are integers.

e.g., eig(F ) = {λ1, · · · , λm1 , σ1 ± jω1, · · · , σm2 ± jωm2}

↓ pole-placement

eig(F −RH) = {dλ1c, · · · , dλm1c, dσ1c±jdω1c, · · · , dσm2c±jdωm2c}
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Method for the conversion
Proof of Lemma

Lemma
Given (F,H), there exists (T,R) such that T (F −RH)T−1 ∈ Zn×n.

3. Transform F −RH into Jordan canonical form.

T (F −RH)T−1

=



dλ1c
. . .

dλm1c
dσ1c dω1c
−dω1c dσ1c

. . .
dσm2

c dωm2
c

−dωm2c dσm2c


∈ Zn×n
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Result
I converted controller over (Z,+,×):

z(t+ 1) = T (F −RH)T−1z(t) +

⌈
TG

s

⌋
y(t) +

⌈
TR

s

⌋ ⌈
s2 · u(t)

⌋
u(t) =

⌈
HT−1

s

⌋
z(t),

(ds2 · u(t)c is considered as external input,
i.e., newly encrypted signal transmitted from actuator)

I under closed-loop stability, ∀ε > 0, ∃r, s s.t. ‖rs2 · u(t)− u(t)‖ ≤ ε, ∀t.

Theorem
Based on the conversion,
linear dynamic controllers can be implemented over encrypted data
I to operate for an infinite time horizon, with equivalent performance,
I without decryption, reset, or bootstrapping for the state z(t),
I using only (+,×) over ciphertexts.

13 / 17



Table of contents

I Problem of running dynamic controllers over encrypted data

I Conversion of state matrix to operate for infinite time horizon

I Parameter design for both security and performance



To take advantage of recent LWE1-based encryption,
effect of injected errors must be considered.

benefits of LWE-based schemes:
I post-quantum cryptosystem
I allows both (+,×)

further benefits2 of [GSW13]:
I multiplication over encrypted data

infinitely many times
I easy implementation

Issue: They all necessarily inject errors for security.
→ error suppression by stability
→ appropriate parameter design required for control performance

e.g., c1 = Enc(m1), c2 = Enc(m2)

→ Dec(Mult(c1, c2)) = m1m2 + ∆, ∆: error growth

→ c′2 = Enc(Lm2), L ∈ N =⇒ Dec(Mult(c1, c
′
2)) = L ·m1m2 + ∆

=⇒ increasing L to deal with error growth

Q. Constraints or issues when increasing L?
1Learning With Errors problem, introduced in [O. Regev, JACM 2009]
2Gentry, Sahai, and Waters, CRYPTO 2013
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Conditions that should not be affected when increasing L

I desired λ-bit security:

n log q ≥ k1λ
(
log2 q + k2

)
=: f1(λ, q) =⇒ n = n(L)

n: ciphertext dimension, q: modulus

I size of plaintext space that covers the range of u(t):

q ≥ (range(u(t)) + 2ε+ r) · L
rs2

=: f2(L, r, s) =⇒ q = q(L)

I (1/r, 1/s) should be chosen large to suppress errors due to quantization.

Parameter design

To satisfy all conditions, define the other parameters as functions of L,
and then increase L.
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Result

implemented controller with effect of injected errors:

z(t + 1) = T (F −RH)T−1z(t) +

⌈
TG

s

⌋
y(t) +

⌈
TR

s

⌋ ⌈
s2 · u(t)

⌋
+ ∆z(t, L)

u(t) =

⌈
HT−1

s

⌋
z(t) + ∆u(t, L),

Theorem

I With the proposed design, ∃ k1 > 0, k2 > 0 s.t.∥∥∥∥[∆z(t, L)
∆u(t, L)

]∥∥∥∥ ≤ k1 (log L)k2

L
→ 0 as L→∞.

I Under closed-loop stability, given ε > 0 and λ > 0, ∃(L, r, s, n, q) s.t.
I ‖rs2 · u(t)− u(t)‖ ≤ ε, for all t ≥ 0.
I the cryptosystem guarantees λ-bit security.
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Conclusion

Two issues that hinder unlimited arithmetic operation,
which have been handled with bootstrapping in cryptography:

I recursive multiplication by non-integer numbers
→ solved by conversion of state matrix with re-encrypted controller output

I growth of injected errors under recursive operation

→ solved by closed-loop stability with parameter design

It enables dynamic controllers to operate over encrypted data

I for infinite time horizon with desired performance and security,

I without use of bootstrapping, decryption, or reset of the state.

Thank you for your time!

email: kjs9044@snu.ac.kr
homepage: kjs9044.wordpress.com / post.cdsl.kr
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Re-encryption of the state is not considered as a solution.

Re-encryption of state enables operation for infinite time horizon, but
I it increases network throughput, proportionally to the state dimension.
I controller state decrypted at the actuator =⇒ security issue



Instead, we make use of re-encrypted controller output.

It is based on the rationale that
I transmission of u(t) to actuator is necessary for control,
I so it can be re-encrypted and transmitted back to controller,

as long as the communication is bi-directional.


